Zr-Ti disilicates from the Pian di Celle volcano, Umbria, Italy

VICTOR V. SHARYGINa, FRANCESCO STOPPAb, *, & BORIS A. KOLESOVc

aInst. of Mineralogy and Petrography, Universitetsky prospect 3, 630090 Novosibirsk, Russia
bDipartimento di Scienze della Terra, Piazza Università, 06123 Perugia, Italy
cInst. of Inorganic Chemistry, Lavrentiev prospect 3, 630090 Novosibirsk, Russia

Abstract: Phases of the cuspidine and götzzenite groups, in addition to khibinskite, are observed in melilitolite from the Pian di Celle volcano both as groundmass minerals and as trapped/daughter phases of melt inclusions hosted by melilite and olivine. The approximate crystallisation sequence, as inferred from their relationships in melilitolite, is thought to be as follows: Zr,Ti-rich cuspidine \rightarrow Zr-rich cuspidine \rightarrow götzzenite, khibinskite.

Zr-rich cuspidine shows notable variations in CaO (58.2-40.4 wt.%), ZrO$_2$ (0.2-11.2 wt.%), Na$_2$O (0.5-4.5 wt.%) and F (10.1-8.1 wt.%). These variations suggest partial solid solution between monoclinic cuspidine, $\text{Ca}_4\text{Si}_2\text{O}_7\text{F}_2$, and pseudo-monoclinic hiortdahlite-2, $\text{Na}_2\text{Ca}_2\text{Zr}_4\text{Si}_2\text{O}_7\text{F}_2$, due to possible combined substitution $2\text{Ca}^{2+} + \text{F}^-$ \leftrightarrow $\text{Na}^+ + \text{Zr}^{4+} + \text{O}^2-$. The X-ray patterns of the Pian di Celle cuspidines, with a different abundance of ZrO$_2$, fall between those of pure cuspidine and hiortdahlite. Raman spectroscopy supports the hypothesis of the above solid solution and shows that the Pian di Celle cuspidine retains monoclinic symmetry with a maximum content of Zr+Ti (up to 0.5 a.f.u.).

Götzzenite, (Na,Ca)$_3$Ti$_5$Zr$_{0.5}$Si$_2$O$_7$(F,O_2)$_2$, generally varies in CaO, REE$_2$O$_3$, TiO$_2$, ZrO$_2$ and Na$_2$O, which may indicate two main cation substitutions: $2\text{Ca}^{2+} \leftrightarrow \text{REE}^{3+} + \text{Na}^+$ and $\text{Ti}^{4+} \leftrightarrow \text{Zr}^{4+} + \text{O}^2-$. The X-ray and spectroscopic data of Pian di Celle götzzenite show negligible differences from götzzenite from other localities. The Zr-Ti-cuspidine composition ranges from Na$_{0.7}$Ca$_{2.8}$Ti$_{0.5}$Si$_2$O$_7$F$_2$O$_{0.3}$ to Na$_{0.8}$Ca$_{2.4}$Zr$_{0.8}$Si$_2$O$_7$F$_2$O$_{0.8}$. Chemical, diffraction and Raman data suggest that the extreme Zr,Ti-rich composition approaches that of hiortdahlite (possibly, hiortdahlite-1).

Khibinskite differs from the ideal composition K$_4$Zr$_2$Si$_2$O$_{14}$ in having high Na (up to 0.25 a.f.u.) and Fe (up to 0.12 a.f.u.) contents.

Key-words: cuspidine, götzzenite, hiortdahlite, khibinskite, compositional data, Raman spectra.

Introduction

The mineralogy of rare Zr-Ti-disilicates representing the cuspidine-wöhlerite-lâvenite and götzzenite-rosenbuschite-seidozerite families has begun to be intensively studied in the last few years (e.g. Merlino & Perchiazzi, 1988). These minerals are fairly typical accessory phases in carbonatites and related rocks (e.g. Keller et al., 1995).

Cuspidine occurs in high-temperature contact metamorphic and metasomatic rocks, while the only reliable possible identification in a magmatic assemblage has been reported from the carbonatite tuffs of Fort Portal, Uganda (Hogarth, 1989).